# CHAPTER



# Continuity and Differentiability, Methods of Differentiation

#### **Properties of Continuous Functions**

Here we present two extremely useful properties of continuous functions;

Let y = f(x) be a continuous function  $\forall x \in [a, b]$ , then following results hold true.

- (*i*) f is bounded between a and b. This simply means that we can find real numbers  $m_1$  and  $m_2$  such  $m_1 \le f(x) \le m_2 \forall x \in [a, b]$ .
- (*ii*) Every value between f(a) and f(b) will be assumed by the function atleast once. This property is called intermediate value theorem of continuous function.

In particular if  $f(a) \cdot f(b) < 0$ , then f(x) will become zero atleast once in (a, b). It also means that if f(a) and f(b) have opposite signs then the equation f(x) = 0 will have atleast one real root in (a, b).

#### **Types of Discontinuities**

#### Type-1: (Removable type of discontinuities)

- (a) Missing point discontinuity: Where  $\lim_{x \to a} f(x)$  exists finitely but f(a) is not defined.
- (b) Isolated point discontinuity: Where  $\lim_{x \to a} f(x)$  exists & f(a) also exists but;  $\lim_{x \to a} f(x) \neq f(a)$ .

#### Type-2 : (Non-Removable type of discontinuities)

- (*a*) Finite type discontinuity : In such type of discontinuity left hand limit and right hand limit at a point exists but are not equal.
- (b) Infinite type discontinuity : In such type of discontinuity atleast one of the limit viz. LHL and RHL is tending to infinity.
- (c) Oscillatory type discontinuity : Limits oscillate between two finite quantities.

#### **Derivability of Function at a Point**

If  $f'(a^+) = f'(a^-) =$  finite quantity, then f(x) is said to be **derivable** or differentiable at x = a. In such case  $f'(a^+) = f'(a^-) = f'(a)$  and it is called derivative or differential coefficient of f(x) at x = a. Note:

- (*i*) All polynomial, trigonometric, inverse trigonometric, logarithmic and exponential function are continuous and differentiable in their domains, except at end points.
- (*ii*) If f(x) and g(x) are derivable at x = a then the functions f(x) + g(x), f(x) g(x), f(x). g(x) will also be derivable at x = a and if  $g(a) \neq 0$  then the function f(x)/g(x) will also be derivable at x = a.

In short, for a function '*f*':

Differentiable  $\Rightarrow$  Continuous;

Not Differentiable  $\Rightarrow$  Not Continuous

**But Not Continuous**  $\Rightarrow$  **Not Differentiable** 

Continuous

## Derivability Over an Interval

(a) f(x) is said to be derivable over an open interval (a, b) if it is derivable at each and every point of the open interval (a, b).

 $\Rightarrow$  May or may not be Differentiable

- (b) f(x) is said to be derivable over the closed interval [a, b] if:
  (i) f(x) is derivable in (a, b) and
  - (*ii*) for the points a and b,  $f'(a^+) \& f'(b^-)$  exist.

Note:

- (i) If f(x) is differentiable at x = a and g(x) is not differentiable at x = a, then the product function F(x) = f(x).g(x) can still be differentiable at x = a.
- (ii) If f(x) & g(x) both are not differentiable at x = a then the product function; F(x) = f(x).g(x) can still be differentiable at x = a.
- (iii) If f(x) & g(x) both are non-derivable at x = a then the sum function F(x) = f(x) + g(x) may be a differentiable function.
- (*iv*) If f(x) is derivable at  $x = a \not\implies f'(x)$  is continuous at x = a.

#### **Differentiation of Some Elementary Functions**

1. 
$$\frac{d}{dx}(x^{n}) = nx^{n-1}$$
  
2. 
$$\frac{d}{dx}(a^{x}) = a^{x}ln a$$
  
3. 
$$\frac{d}{dx}(ln | x |) = \frac{1}{x}$$
  
4. 
$$\frac{d}{dx}(\log_{a} x) = \frac{1}{x \ln a}$$
  
5. 
$$\frac{d}{dx}(\sin x) = \cos x$$
  
6. 
$$\frac{d}{dx}(\cos x) = -\sin x$$

7. 
$$\frac{d}{dx}(\sec x) = \sec x \tan x$$
  
8.  $\frac{d}{dx}(\csc x) = -\csc x \cot x$   
9.  $\frac{d}{dx}(\tan x) = \sec^2 x$   
10.  $\frac{d}{dx}(\cot x) = -\csc^2 x$ 

#### **Basic Theorems**

14

1. 
$$\frac{d}{dx}(f \pm g)(x) = f'(x) \pm g'(x)$$
  
2.  $\frac{d}{dx}(k f(x)) = k \frac{d}{dx}f(x)$   
3.  $\frac{d}{dx}(f(x) \cdot g(x)) = f(x)g'(x) + g(x)f'(x)$   
4.  $\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$   
5.  $\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$ 

# **Derivative of inverse Trigonometric Functions**

$$\frac{d\sin^{-1}x}{dx} = \frac{1}{\sqrt{1-x^2}}, \frac{d\cos^{-1}x}{dx} = -\frac{1}{\sqrt{1-x^2}}, \text{ for } -1 < x < 1$$
$$\frac{d\tan^{-1}x}{dx} = \frac{1}{1+x^2}, \frac{d\cot^{-1}x}{dx} = -\frac{1}{1+x^2} \quad (x \in R)$$
$$\frac{d\sec^{-1}x}{dx} = \frac{1}{|x|\sqrt{x^2-1}}, \frac{d\csc^{-1}x}{dx}$$
$$= -\frac{1}{|x|\sqrt{x^2-1}}, \text{ for } x \in (-\infty, -1) \cup (1, \infty)$$

# **Differentiation Using Substitution**

Following substitutions are normally used to simplify these expression.

1. 
$$\sqrt{x^2 + a^2}$$
 by substituting  $x = a \tan \theta$ , where  $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$   
2.  $\sqrt{a^2 - x^2}$  by substituting  $x = a \sin \theta$ , where  $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$   
3.  $\sqrt{x^2 - a^2}$  by substituting  $x = a \sec \theta$ , where  $\theta \in [0, \pi], \ \theta \neq \frac{\pi}{2}$   
4.  $\sqrt{\frac{x + a}{a - x}}$  by substituting  $x = a \cos \theta$ , where  $\theta \in [0, \pi]$ .

### **Parametric Differentiation**

If  $y = f(\theta)$  and  $x = g(\theta)$  where  $\theta$  is a parameter, then  $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ .

# Derivative of one Function with Respect to Another

Let 
$$y = f(x)$$
;  $z = g(x)$  then  $\frac{dy}{dz} = \frac{dy/dx}{dz/dx} = \frac{f'(x)}{g'(x)}$ .  
 $\Rightarrow$  If  $F(x) = \begin{vmatrix} f(x) & g(x) & h(x) \\ l(x) & m(x) & n(x) \\ u(x) & v(x) & w(x) \end{vmatrix}$ , where  $f, g, h, l, m, n, u, v, w$ 

are differentiable functions of x then

$$F'(x) = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ l(x) & m(x) & n(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ l'(x) & m'(x) & n'(x) \\ u(x) & v(x) & w(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ l(x) & m(x) & n(x) \\ u'(x) & v'(x) & w'(x) \end{vmatrix}$$